

Octagram A1TX контроллер СКУД для турникета со считывателями штрих-кода

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

Оглавление

Общая информация	2
Технические характеристики	3
Контроллер A1TX общий вид	4
Схема подключения	5
Описание работы контроллера	6
Алгоритм работы системы	6
Работа исполнительных реле	8
Индикация контроллера	8
Подключение компонентов	8
Подключение и настройка считывателя Zebra DS457	8
Подключение датчика вскрытия корпуса (тампер)	9
Подключение питания и линии LBUS	9
Установка модульного концентратора СЕМ(Р)	10
Настройка концентратора СЕМ(Р)	10
Добавление контроллера A1TX в Octagram Flex	11
Настройка контроллера	13
Сохранение параметров	16
Техническая поддержка	16

Общая информация

Контроллер А1 с предустановленной прошивкой ТХ.

Контроллер A1TX предназначен для построения системы контроля доступа через одну точку прохода путем считывания штрих-кодов. Может использоваться для организации проходных на вокзалах.

Основные функции:

- 1. Управление сервомеханизмом турникета;
- 2. Обеспечение входа/выхода по штрих-коду или по команде оператора;
- 3. Интеграция с системой «1С: Райс».

Необходимое оборудование и ПО:

- контроллер A1TX протокол 7f прошивка 1652 управление турникетом с подключением считывателей Zebra DS457;
- считыватели штрих-кодов Zebra Motorola Symbol DS457-SRER20009или DS457-SREU20009;
- схема согласования уровней для Zebra DS457 (монтируется в разъем DB9-F, спрашивайте у наших менеджеров);
- плата IP концентратора конвертер CEM с подключением до 255 контроллеров (рекомендовано 32) в линию LBUS (обеспечивает преобразование сигналов TCP/IP в сигналы интерфейса LBUS) для подключения линии связи контроллеров в локальную сеть;
- Octagram Flex Lux/Super SQL версии 5.3.686 и выше
- ПО MS SQL (Express) Server или, содержащий БД, через которую осуществляется взаимодействие компонентов системы.

Технические характеристики

Тип оборудования Контроллер СКУД (турникет, ворота,

шлагбаум, барьер)

Количество настраиваемых внутренних реакций 96

Количество ключей/событий 1000/3000/8000/16000/32000/64000

Тип идентификаторов Штрих-код

Количество типов доступа 2

Количество расписаний 1

Antipassback Есть

Контроль датчиков прохода вход/выход

НО/НЗ реле 2 (вход/выход)

Коммутируемый ток реле контроллера 2 А, 60 В

Интерфейс связи между контроллерами LBUS

Длина линии связи LBUS (при U=8,5...13,5 B), не более 700 м

Интерфейс связи с компьютером ТСР/ІР

Потребление 80 мА

Напряжение питания 12 В

Корпус АБС пластик

Габаритные размеры 95 x 90 x 48мм

Масса устройства 230г

Диапазон рабочих температур +5.. +40°C

Относительная влажность при +15°C 80%

Относительная влажность при +25°C 90%

Контроллер А1ТХ общий вид

Универсальный контроллер предназначен для построения сетевых адресных систем безопасности.

Управляет СКУД, контролирует одну точку доступа (турникет, ворота, шлагбаум, барьер). Контроллер передает информацию на сервер в режиме реального времени. Связь с сервером должна быть постоянной. Контроллер устанавливается внутри охраняемого объекта и рассчитан на круглосуточный режим работы. Отличительной особенностью контроллеров серии А1 является возможность смены функционала путем обновления их рабочей микропрограммы.

Рисунок 1 – Контроллер А1 общий вид

Схема подключения

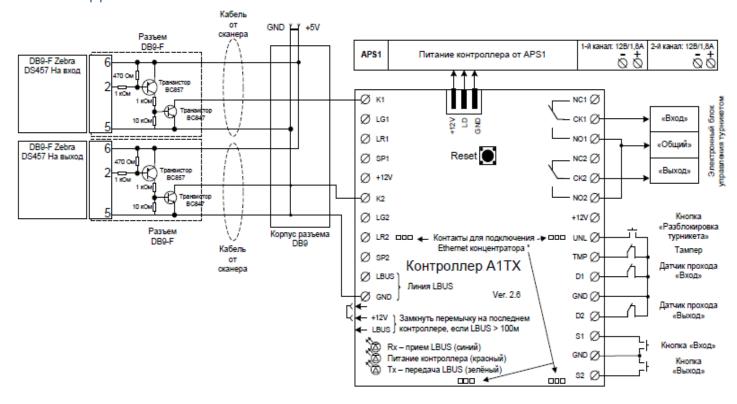


Рисунок 2 – Схема подключения контроллера А1ТХ

LBUS - контакт подключения к адресной линии связи с другими контроллерами в линии LBUS;

GND - общий провод (к контакту заземления не подключать!)

К1 (К2) - контакт подключения считывателей штрих кодов для управления турникетом на вход/выход. Интерфейс RS-232. К1 — считыватель вход, К2 — выход.

LG1 - зеленый светодиод индикации на считывателе входа (активный "1")

LG2 - зеленый светодиод индикации на считывателе выхода (активный "1")

LR1 - красный светодиод индикации на считывателе входа (активный "1")

LR2 - красный светодиод индикации на считывателе выхода (активный "1")

SP1 - контакт подключения акустического излучателя звука считывателя входа (активный "1")

SP2 - контакт подключения акустического излучателя звука считывателя выхода (активный "1")

<u>Контакты индикации не используются при подключении считывателей Zebra, но могут быть использованы для подключения сторонних устройств индикации.</u>

NO1, CK1, NC1, NO2, CK2, NC2 - контакты 1-го, 2-го реле: нормально разомкнутый, центральный, нормально замкнутый, для подключения электронного блока управления турникетом

TMP - контроль тампера (если датчика нет, установите перемычку на GND)

D1 - контакт подключения датчика турникета на вход

D2 - контакт подключения датчика турникета на выход

\$1 - контакт подключения кнопки турникета "Вход"

S2 - контакт подключения кнопки турникета "Выход"

UNL – контакт подключения кнопки аварийной разблокировки турникета.

+12V - выходное напряжение +12B для питания внешних устройств

GND - общий провод (к контакту заземления не подключать!)

USB разъем предназначен для подключения адресного источника питания APS1

Питания контроллеру можно подавать на контакты +12V и GND.

Примечание: установите перемычку TMP – GND если нет тампера, иначе на контроллере будет состояние «Тампер вскрыт».

Описание работы контроллера

Контроллер размещается в закрытом пластиковом корпусе, предназначенном для крепления на DIN-рейку. Контроллер устанавливается внутри охраняемого объекта и рассчитан на круглосуточный режим работы.

Система может быть построена на базе одного или нескольких контроллеров. Каждый контроллер подключается к адресной линии LBUS. Связь ПК с контроллером осуществляется по линии LBUS через TCP/IP-концентратор (CEM, CEMP, CLEM).

Контроллер A1TX предназначен для работы в *сетевом онлайн режиме* в составе модульной инженерной системы «Осtagram». Связь с сервером должна быть постоянной.

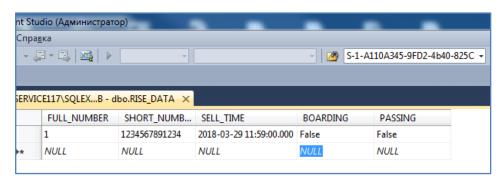
При работе в сети прибор передает информацию на компьютер с установленным программным обеспечением «Octagram Flex» по сети Ethernet. Настройка, мониторинг и ручное управление системой осуществляется с помощью ПК с установленным ПО Octagram Flex.

Алгоритм работы системы

Серверы MS SQL Server и Octagram Flex размещаются на одной физической/виртуальной ЭВМ. Размещение сервера 1C: Райс произвольно.

Для взаимодействия между ПО 1C: Райс и ПО Octagram Flex используется таблица БД, в которую ПО 1C: Райс вносит записи о билетах, которые разрешены к выходу на перрон.

ПО 1C: Райс соединяется с БД взаимодействия при помощи стандартных протоколов сетевого доступа к серверам MS SQL Server.


Запись таблицы содержит следующие поля:

- Номер билета;
- Сокращённый номер билета;
- Дата/время продажи билета;
- Отметка о нахождении на перроне;

Отметка о предъявлении билета.

Штрих-коды, указанные на билетах, включают содержимое поля «Сокращённый номер билета», представленное в виде беззнакового целого и подвергнутое операции логического «НЕ». Полученный код дополнен контрольной цифрой согласно спецификации EAN-13 справа, и нулями слева до полного размера кода. Перед сравнением предъявленного пассажиром штрих-кода с содержимым таблицы контрольная цифра и лидирующие нули отбрасываются, после чего к полученному числу применяется операция логического «НЕ».

Штрих-коды билетов заносятся через систему «1С: Райс» и попадают в таблицу RISE_DATA.

FULL NUMBER – полный номер билета (может быть любым)

SHORT NUMBER – код билета в формате EAN-13 (12 символов плюс контрольная сумма)

SELL TIME-Время в формате ГГГГ-ММ-ДД ЧЧ:ММ:СС.000

BOARDING – Отметка о нахождении на перроне (False-еще не прошел, True-прошел)

PASSING – Отметка о предъявлении билета (True штрих-код предъявлен, еще не прошел, False– штрих-код еще не предъявлен)

Штрих-код считывается и попадает в контроллер A1TX, контроллер запрашивает разрешение на пропуск у программного обеспечения Octagram Flex, он ожидает ответа 15 секунд, если ответа нет, то не дает пройти и выдает отрицательную индикацию. Если связь с сервером есть, ПО проверяет код по таблице RISE_DATA и дает/не дает контроллеру разрешение на проход, при этом отслеживаются повторные входы/выходы.

Возможны события:

1. Код считан, код есть в базе, проходов не было:

«Вход\Выход сотрудника»

2. Код считан, в базе нет, проходов не было:

«Вход\Выход не разрешен – Нет доступа»

3. Код считан, в базе есть, проход уже был:

«Вход\Выход не разрешен – двойной проход запрещен»

Примечание: В колонке доп. инфо отображается 12-ти значный код считанного штрих-кода.

Работа исполнительных реле

Оба реле управляют работой турникета: 1-е реле разрешает вход через турникет, 2-е реле – выход. Контакты реле "NO" и "СК" при поданном напряжении питания по умолчанию замкнуты.

Индикация контроллера

- Индикатор питания контроллера постоянно горит при наличии питания красным цветом.
- Индикаторы приема/передачи данных мигают при приеме/передаче данных по линии LBUS.
- При коротком замыкании или неправильной полярности линии индикатор приема светится постоянно.

Подключение компонентов

Подключение и настройка считывателя Zebra DS457

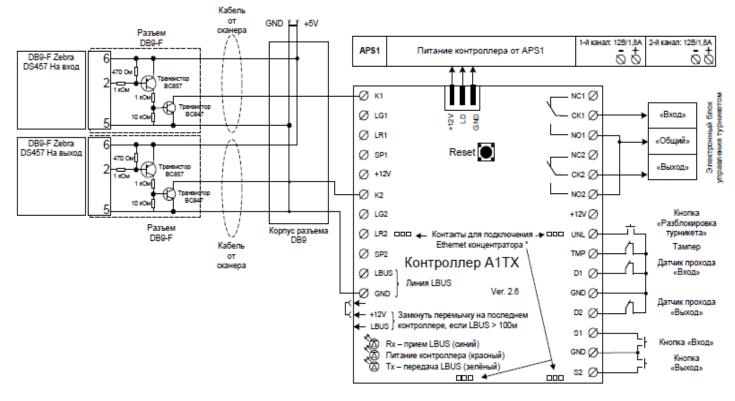


Рисунок 3 — Схема поделючения считывателей Zebra DS457

Цифрами отмечены номера контактов разъема DB9-F

Для корректной работы считывателей нужно задать заводские параметры и режим работы по протоколу RS-232. Для этого необходимо последовательно считать коды:

Задать заводские параметры по умолчанию

Стандартный RS-232 (передача только данных ASCII)

Подключение датчика вскрытия корпуса (тампер)

Используемые контакты:

- ТМР подключение датчика с НЗ контактом;
- GND общий.

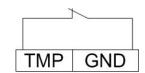


Рисунок 4 – Схема подключения тампера

Примечание: если тампер не используется, то контакт TMP необходимо замкнуть на GND перемычкой.

Подключение питания и линии LBUS

Используемые контакты:

- +12V вход для +12 В постоянного тока;
- GND общий;
- LBUS сигнальный провод (двухпроводная линия между контроллерами GND и LBUS)

ВАЖНО! Убедитесь, что:

- Контролеры объединены линией LBUS и нормально функционируют;
- Каждый контроллер имеет свой уникальный адрес;
- **Если длинна LBUS больше 100 м** на самом дальнем контроллере установлена перемычка питания LBUS, при меньшей длине линии питание не нужно (перемычка выключена –слева).

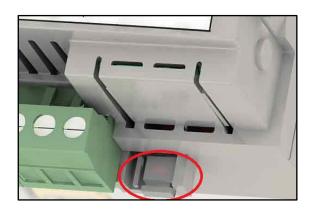


Рисунок 5 – Перемычка питания LBUS включена

Установка модульного концентратора СЕМ(Р)

Важно! Не устанавливайте концентратор при поданном на контроллер питании! Снимите верхнюю крышку контроллера А1 и установите концентратор СЕМ(Р) в специальное отделение, так что бы все 4 группы ножек попали в черные разъёмы:

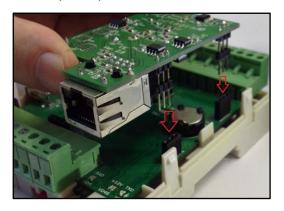


Рисунок 6 – Установка концентратора СЕМ

Продавите перегородку в крышке контроллера помеченную Ethernet и установите крышку обратно на контроллер.

Настройка концентратора СЕМ(Р)

Для настройки сетевых параметров концентратора используйте «Мастер настройки оборудования»:

IP - адрес концентратора по умолчанию 10.0.0.1

- 1. Скачайте архив с утилитой с сайта;
- 2. Распакуйте и установите WinPcap 4 1 3.exe;
- 3. Подключите контроллер с концентратором в сеть к компьютеру, подайте питание.

- 4. Запустите HardwareUtility.exe;
- 5. Нажмите «Найти CLE»;
- 6. МАС адрес концентратора должен появится в правом поле;
- 7. Разверните параметры устройства, нажав на «+»;
- 8. Двойным кликом нажмите на IP-адрес и укажите нужное значение.
- 9. Двойным кликом нажмите на «Маска сети» и укажите нужное значение.
- 10. Двойным кликом нажмите на «Шлюз по умолчанию» и укажите нужное значение.
- 11. Чтобы сохранить параметры, нажмите «Запись CLE»

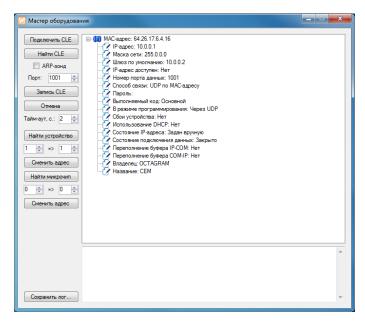


Рисунок 7 - Настройка концентратора

Примечание: иногда требуется повторный сброс питания после изменения параметров.

<u>Концентратор можно найти командой «Найти CLE» только в течении 10 минут после подачи питания! Если вы</u> он не находится, сбросьте питание и попробуйте снова.

Добавление контроллера A1TX в Octagram Flex

Запустите Octagram Flex, на окне входа в систему используйте:

Имя пользователя: admin. Пароль: admin. Поля «Сервер» и «Домен» оставьте пустыми.

Примечание: если последующий запрос авторизации не требуется, то установите галочку «запомнить».

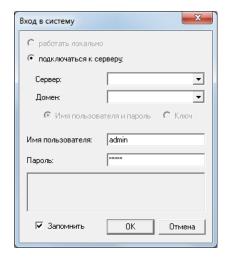


Рисунок 8 – Вход в систему.

В дереве компонент программы перейдите на пункт «Контроль доступа». Правой клавишей мыши выберите пункт контекстного меню «Все задачи/Поиск устройств».

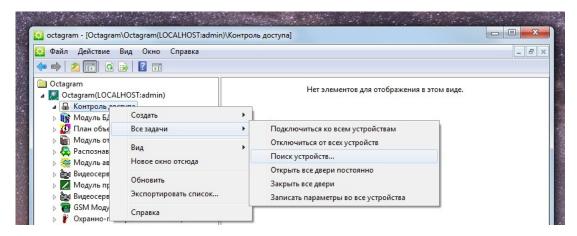


Рисунок 9 – Поиск контроллера.

В появившемся окне укажите ІР адрес концентратора и шинный адрес контроллера:

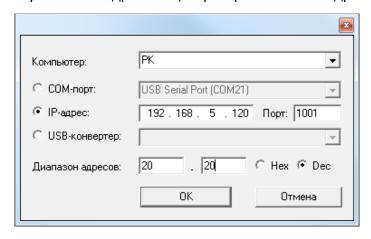


Рисунок 10 – Окно поиска с настройками концентратора

Примечание: по умолчанию выбран весь диапазон адресов. Для ускорения поиска контроллеров задайте диапазон адресов или конкретный адрес. Адрес контроллера можно узнать на обратной стороне контроллера. Адрес указан в десятичном виде (Dec).

Нажмите «ОК».

В появившемся информационном окне будет представлен ход и результаты поиска.

Поиск занимает некоторое время, интерфейс может быть не активен на время операции.

Новый контроллер добавится в дереве компонентов программы, в модуле «Контроль доступа».

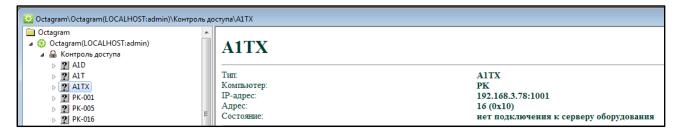


Рисунок 11 – Окно программы Octagram Flex

Переименуйте новый контроллер, чтобы с ним было легче работать.

Настройка контроллера

Для настройки контроллера выделите его в пункте «Контроль доступа» дерева компонентов. В контекстном меню выберите «Свойства» или нажмите кнопку «Свойства» на панели инструментов.

Зайдите в свойства контроллера (ПКМ на контроллер → Свойства).

Свойства: А1ТХ	8 🗵
Общие Специальные	
SID:	S-1-49017E87-4465-4af1-A29C-B3676FF
Тип:	A1TX •
Имя компьютера:	PK 🔻
С СОМ-порт:	
ПР-адрес:	192.168. 3 . 78 Порт: 1001
С USB-конвертер	y
Адрес:	16 C Hex
Запись параметров:	 Двтоматическое подключение Вручную Автоматически при изменениях Каждые Сек.
ОК Отмена Применить	

Рисунок 12 – Свойства контроллера

SID: Уникальный идентификатор контроллера, формируемый автоматически. Изменить его невозможно.

Тип: Тип контролера. Определяется при поиске. Изменять рекомендуется только при смене прошивки контроллера или замене на другое устройство.

Имя компьютера: Сетевое имя компьютера, к которому подключен данный контроллер.

IP-адрес: IP-адрес концентратора, к которому подключены данный контроллер.

Адрес: Адрес контроллера в системе Octagram.

Автоматическое подключение: установите этот флажок для автоматического подключения к контроллеру при запуске ПО Octagram Flex.

Запись параметров:

Вручную — Запись параметров в контроллер будет осуществляться по команде оператора. Рекомендуется при редких изменениях в базе данных или на этапе запуска системы, когда заполняется вся база данных ключей пользователей.

Автоматически при изменениях — Запись параметров в контроллер будет осуществляться автоматически сразу после внесения изменений в базу данных. Рекомендуется при редких и небольших изменениях.

Каждые ... сек. — Запись параметров в контроллер будет осуществляться автоматически с заданной периодичностью. Рекомендуется при периодических изменениях в базе данных. Например, при использовании тарификации, оформления гостевых карт и пр.

Перейдите на вкладку «Специальные».

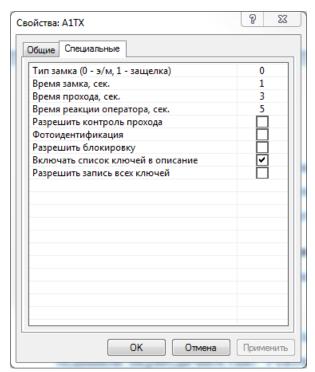


Рисунок 13 – Специальные свойства контроллера

Вкладка Специальные

На этой вкладке задаются параметры настройки контроллера.

Набор параметров отличается для разных типов контроллеров. Ниже приведен общий список параметров с описанием.

Тип замка

«0» - Потенциальное, «1» - Импульсное.

Время замка

Время, на которое будет срабатывать реле контроллера для открытия точки доступа после идентификации прописанного ключа пользователя.

Рекомендуется устанавливать время для электромагнитного замка (тип «О») - в пределах 3-4 сек, для электромеханического (тип «1») - 0,4 сек.

Примечание. Для электромагнитного замка (тип «0») время указывается в секундах. Для электромеханического (тип «1») - в долях секунды: «0,1», «0,2» и т.д., но не более «0,9».

Время прохода

Время, необходимое пользователю для прохода через точку доступа. Это время начинает отсчитываться с момента размыкания датчика прохода контроллера. Если по истечении этого времени датчик прохода остается разомкнутым, контроллер выдает сигнал о том, что точка доступа осталась открытой.

Рекомендуется устанавливать в пределах 5-10 сек.

Время реакции оператора

Время, в течение которого оператор программы должен принять решение о проходе сотрудника через точку доступа в режиме фотоидентификации (при установленном флажке Фотоидентификация, см. далее).

Рекомендуется устанавливать в пределах: 5-30 сек.

Разрешить контроль прохода

Включается режим прохода с опросом геркона двери. При этом после приложения ключа должен сработать геркон двери, что соответствует «нормальному проходу» и формированию события *Вход/выход сотрудника*. Если дверь не открывалась (геркон не срабатывал), формируется событие *Отказ от прохода*.

Фотоидентификация

Включается режим фотоидентификации пользователей при проходе через точку доступа. В этом режиме после приложения ключа к считывателю точка доступа не открывается, а фиксируется событие *Приложение ключа к считывателю*. Оператор принимает решение открывать или нет точку доступа. Для открытия используется соответствующая команда программы или кнопка *Выход*. При этом в системе возникает событие *Вход сотрудника*, приложившего перед этим ключ.

Разрешить блокировку

Установите флажок для включения режима блокировки точки доступа. Блокировка возможна ключом с типом доступа **Блокировать** или по команде оператора с компьютера. В этом режиме контроллером игнорируются все ключи с типом доступа, отличным от **Блокировать** и **Генеральный.**

Включать список ключей в описание

Список ключей, записанных в контроллер, добавляется в описание контроллера (отображается в правой части окна программы при выделении устройства в дереве компонент). При большом количестве ключей рекомендуется убирать этот флажок для уменьшения нагрузки на *Центральный Сервер* и клиентскую консоль.

Разрешить запись всех ключей

В выбранный контроллер будут прописываться все ненулевые ключи из базы данных, включая заблокированные. При снятом флажке в контроллер будут прописываться только ключи, имеющие права доступа в него.

Рекомендуется устанавливать флажок для ускорения записи параметров в контроллер только в случаях, когда ключей в базе данных много и они часто изменяются.

Для сохранения изменений свойств контроллера - нажмите «ОК».

Запишите сделанные изменения свойств контроллера, выбрав пункт контекстного меню контроллера «Все задачи/Записать параметры и права доступа».

При необходимости записи параметров в контроллер его значок в дереве компонент отмечается восклицательным знаком и в строке **Состояние** (в области просмотра, контроллер выделен в дереве компонент) появляется запись «Необходима запись параметров».

Для просмотра состояния контроллера выделите его в дереве компонент и в области просмотра в строке **Состояние,** посмотрите текущее состояние устройства.

Сохранение параметров

Запишите сделанные изменения свойств контроллера, выбрав пункт контекстного меню контроллера «Все задачи/Записать параметры».

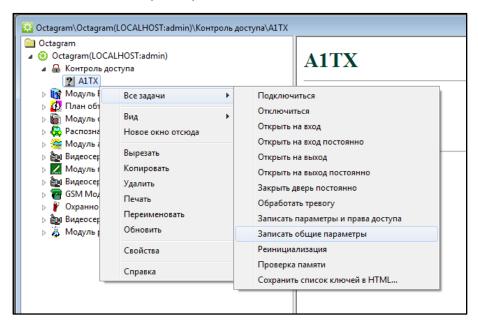


Рисунок 14 – Запись параметров

Контроллер готов к работе!

Техническая поддержка

Техническая поддержка продукции Octagram осуществляется в рабочее время предприятияизготовителя. Поддержка ориентирована на подготовленных инженеров и пользователей программного обеспечения в среде Windows. Конечные пользователи данной системы должны связываться с дилерами предприятия-изготовителя, прежде чем обращаться к предприятию изготовителю.

Предприятие-изготовитель оставляет за собой право вносить доработки и изменения, не влияющие на технические характеристики и потребительские свойства системы.

Предприятие - изготовитель осуществляет бесплатные консультации по телефону, а также проводит:

• еженедельные семинары, охватывающие вопросы установки, настройки и эксплуатации системы и программного обеспечения Octagram Flex;

- дистанционное обучение;
- сертификацию пользователей системы;
- тематические семинары на территории заказчика (услуга платная).

Сведения о сертификации

Сертификат пожарной безопасности C-RU. ЧС13.В.01065, срок действия до 21.03.2023. Декларация о соответствии TC N RU д-RU. АГ73.В. 45639 срок действия до 22.06.2019.

Сведения о производителе

Группа «Октаграм»

Адрес: г. Москва, 1-й Басманный переулок, д. 12, стр. 1, 105066.

Тел.: 8 (495) 308-00-64, 8 (800) 775-96-26 (бесплатно с городского и мобильного телефонов по России).

Факс: 8 (495) 607-02-56

Электронная почта: info@octagram.ru, интернет: www.octagram.ru.

Octagram™ является зарегистрированной торговой маркой, принадлежащей швейцарской компании Octagram S.A. © Все права защищены.